Lösungen
Integrale RechnerAbleitung RechnerAlgebra RechnerMatrix RechnerMehr...
Grafiken
LiniendiagrammExponentieller GraphQuadratischer GraphSinusdiagrammMehr...
Rechner
BMI-RechnerZinseszins-RechnerProzentrechnerBeschleunigungsrechnerMehr...
Geometrie
Satz des Pythagoras-RechnerKreis Fläche RechnerGleichschenkliges Dreieck RechnerDreiecke RechnerMehr...
AI Chat
Werkzeuge
NotizbuchGruppenSpickzettelArbeitsblätterÜbungenÜberprüfe
de
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Beliebt Rechnen >

integral of (cos(ln(x))sin(ln(x)))/x

  • Voralgebra
  • Algebra
  • Vorkalkül
  • Rechnen
  • Funktionen
  • Lineare Algebra
  • Trigonometrie
  • Statistik
  • Chemie
  • Ökonomie
  • Umrechnungen

Lösung

∫xcos(ln(x))sin(ln(x))​dx

Lösung

−41​cos(2ln(x))+C
Schritte zur Lösung
∫xcos(ln(x))sin(ln(x))​dx
Umschreiben mit Hilfe von Trigonometrie-Identitäten
=∫2xsin(2ln(x))​dx
Entferne die Konstante: ∫a⋅f(x)dx=a⋅∫f(x)dx=21​⋅∫xsin(2ln(x))​dx
Wende U-Substitution an
=21​⋅∫2sin(u)​du
Entferne die Konstante: ∫a⋅f(x)dx=a⋅∫f(x)dx=21​⋅21​⋅∫sin(u)du
Nutze das gemeinsame Integral : ∫sin(u)du=−cos(u)=21​⋅21​(−cos(u))
Setze in u=2ln(x)ein=21​⋅21​(−cos(2ln(x)))
Vereinfache 21​⋅21​(−cos(2ln(x))):−41​cos(2ln(x))
=−41​cos(2ln(x))
Füge eine Konstante zur Lösung hinzu =−41​cos(2ln(x))+C

Graph

Sorry, your browser does not support this application
Interaktives Diagramm anzeigen

Beliebte Beispiele

integral of sin^2(x)cos(x)e^{sin(x)}∫sin2(x)cos(x)esin(x)dxintegral of (x^9)/((x^5+1)^3)∫(x5+1)3x9​dxintegral of (1+ln(x))/(sqrt(xln(x)))∫xln(x)​1+ln(x)​dxintegral of (9cos(x)+5sin(x))∫(9cos(x)+5sin(x))dxintegral of y*e^{y^2}∫y⋅ey2dy
LernwerkzeugeKI-Mathe-LöserAI ChatArbeitsblätterÜbungenSpickzettelRechnerGrafikrechnerGeometrie-RechnerLösung überprüfen
AppsSymbolab App (Android)Grafikrechner (Android)Übungen (Android)Symbolab App (iOS)Grafikrechner (iOS)Übungen (iOS)Chrome-Erweiterung
UnternehmenÜber SymbolabBlogHilfe
LegalDatenschutzbestimmungenService TermsCookiesCookie-EinstellungenVerkaufen oder teilen Sie meine persönlichen Daten nichtUrheberrecht, Community-Richtlinien, DSA und andere rechtliche RessourcenLearneo Rechtszentrum
Soziale Medien
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024