Soluções
Calculadora de integrais (antiderivadas)Calculadora de derivadasCalculadora de álgebraCalculadora de matrizesMais...
Gráficos
Gráfico de linhaGráfico exponencialGráfico QuadráticoGráfico de sinMais...
Calculadoras
Calculadora de IMCCalculadora de juros compostosCalculadora de porcentagemCalculadora de aceleraçãoMais...
Geometria
Calculadora do Teorema de PitágorasCalculadora de área de círculoCalculadora Triângulo IsóscelesCalculadora de TriângulosMais...
AI Chat
Ferramentas
CadernoGruposFolhas de "cola"Fichas de trabalhoPráticaVerificar
pt
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometria >

cos(9x+15)=sin(7x-5)

  • Pré-álgebra
  • Álgebra
  • Pré-cálculo
  • Cálculo
  • Funções
  • Álgebra Linear
  • Trigonometria
  • Estatística
  • Química
  • Conversões

Solução

cos(9x+15)=sin(7x−5)

Solução

x=324πn+π−20​,x=−44πn+40+π​
+1
Graus
x=−30.18486…∘+22.5∘n,x=−617.95779…∘−180∘n
Passos da solução
cos(9x+15)=sin(7x−5)
Reeecreva usando identidades trigonométricas
cos(9x+15)=sin(7x−5)
Usar a seguinte identidade: cos(x)=sin(2π​−x)cos(9x+15)=sin(2π​−(9x+15))
cos(9x+15)=sin(2π​−(9x+15))
Aplique as propriedades trigonométricas inversas
cos(9x+15)=sin(2π​−(9x+15))
sin(x)=sin(y)⇒x=y+2πn,x=π−y+2πn7x−5=2π​−(9x+15)+2πn,7x−5=π−(2π​−(9x+15))+2πn
7x−5=2π​−(9x+15)+2πn,7x−5=π−(2π​−(9x+15))+2πn
7x−5=2π​−(9x+15)+2πn:x=324πn+π−20​
7x−5=2π​−(9x+15)+2πn
Expandir 2π​−(9x+15)+2πn:2π​−9x−15+2πn
2π​−(9x+15)+2πn
−(9x+15):−9x−15
−(9x+15)
Colocar os parênteses=−(9x)−(15)
Aplicar as regras dos sinais+(−a)=−a=−9x−15
=2π​−9x−15+2πn
7x−5=2π​−9x−15+2πn
Mova 5para o lado direito
7x−5=2π​−9x−15+2πn
Adicionar 5 a ambos os lados7x−5+5=2π​−9x−15+2πn+5
Simplificar
7x−5+5=2π​−9x−15+2πn+5
Simplificar 7x−5+5:7x
7x−5+5
Somar elementos similares: −5+5=0
=7x
Simplificar 2π​−9x−15+2πn+5:−9x+2πn+2π​−10
2π​−9x−15+2πn+5
Agrupar termos semelhantes=−9x+2πn+2π​−15+5
Somar/subtrair: −15+5=−10=−9x+2πn+2π​−10
7x=−9x+2πn+2π​−10
7x=−9x+2πn+2π​−10
7x=−9x+2πn+2π​−10
Mova 9xpara o lado esquerdo
7x=−9x+2πn+2π​−10
Adicionar 9x a ambos os lados7x+9x=−9x+2πn+2π​−10+9x
Simplificar16x=2πn+2π​−10
16x=2πn+2π​−10
Dividir ambos os lados por 16
16x=2πn+2π​−10
Dividir ambos os lados por 161616x​=162πn​+162π​​−1610​
Simplificar
1616x​=162πn​+162π​​−1610​
Simplificar 1616x​:x
1616x​
Dividir: 1616​=1=x
Simplificar 162πn​+162π​​−1610​:324πn+π−20​
162πn​+162π​​−1610​
Aplicar a regra ca​±cb​=ca±b​=162πn+2π​−10​
Simplificar 2πn+2π​−10em uma fração:24πn+π−20​
2πn+2π​−10
Converter para fração: 2πn=22πn2​,10=210⋅2​=22πn⋅2​+2π​−210⋅2​
Já que os denominadores são iguais, combinar as frações: ca​±cb​=ca±b​=22πn⋅2+π−10⋅2​
2πn⋅2+π−10⋅2=4πn+π−20
2πn⋅2+π−10⋅2
Multiplicar os números: 2⋅2=4=4πn+π−10⋅2
Multiplicar os números: 10⋅2=20=4πn+π−20
=24πn+π−20​
=1624πn+π−20​​
Aplicar as propriedades das frações: acb​​=c⋅ab​=2⋅164πn+π−20​
Multiplicar os números: 2⋅16=32=324πn+π−20​
x=324πn+π−20​
x=324πn+π−20​
x=324πn+π−20​
7x−5=π−(2π​−(9x+15))+2πn:x=−44πn+40+π​
7x−5=π−(2π​−(9x+15))+2πn
Expandir π−(2π​−(9x+15))+2πn:π−2π​+9x+15+2πn
π−(2π​−(9x+15))+2πn
−(9x+15):−9x−15
−(9x+15)
Colocar os parênteses=−(9x)−(15)
Aplicar as regras dos sinais+(−a)=−a=−9x−15
=π−(−9x+2π​−15)+2πn
−(2π​−9x−15):−2π​+9x+15
−(2π​−9x−15)
Colocar os parênteses=−(2π​)−(−9x)−(−15)
Aplicar as regras dos sinais−(−a)=a,−(a)=−a=−2π​+9x+15
=π−2π​+9x+15+2πn
7x−5=π−2π​+9x+15+2πn
Mova 5para o lado direito
7x−5=π−2π​+9x+15+2πn
Adicionar 5 a ambos os lados7x−5+5=π−2π​+9x+15+2πn+5
Simplificar
7x−5+5=π−2π​+9x+15+2πn+5
Simplificar 7x−5+5:7x
7x−5+5
Somar elementos similares: −5+5=0
=7x
Simplificar π−2π​+9x+15+2πn+5:9x+2πn+20+π−2π​
π−2π​+9x+15+2πn+5
Agrupar termos semelhantes=9x+π+2πn−2π​+15+5
Somar: 15+5=20=9x+2πn+20+π−2π​
7x=9x+2πn+20+π−2π​
7x=9x+2πn+20+π−2π​
7x=9x+2πn+20+π−2π​
Mova 9xpara o lado esquerdo
7x=9x+2πn+20+π−2π​
Subtrair 9x de ambos os lados7x−9x=9x+2πn+20+π−2π​−9x
Simplificar−2x=2πn+20+π−2π​
−2x=2πn+20+π−2π​
Dividir ambos os lados por −2
−2x=2πn+20+π−2π​
Dividir ambos os lados por −2−2−2x​=−22πn​+−220​+−2π​−−22π​​
Simplificar
−2−2x​=−22πn​+−220​+−2π​−−22π​​
Simplificar −2−2x​:x
−2−2x​
Aplicar as propriedades das frações: −b−a​=ba​=22x​
Dividir: 22​=1=x
Simplificar −22πn​+−220​+−2π​−−22π​​:−44πn+40+π​
−22πn​+−220​+−2π​−−22π​​
Aplicar a regra ca​±cb​=ca±b​=−22πn+20+π−2π​​
Aplicar as propriedades das frações: −ba​=−ba​=−22πn+20+π−2π​​
Simplificar 2πn+20+π−2π​em uma fração:24πn+40+π​
2πn+20+π−2π​
Converter para fração: 2πn=22πn2​,20=220⋅2​,π=2π2​=22πn⋅2​+220⋅2​+2π2​−2π​
Já que os denominadores são iguais, combinar as frações: ca​±cb​=ca±b​=22πn⋅2+20⋅2+π2−π​
2πn⋅2+20⋅2+π2−π=4πn+40+π
2πn⋅2+20⋅2+π2−π
Somar elementos similares: 2π−π=π=2⋅2πn+20⋅2+π
Multiplicar os números: 2⋅2=4=4πn+20⋅2+π
Multiplicar os números: 20⋅2=40=4πn+40+π
=24πn+40+π​
=−224πn+π+40​​
Simplificar 224πn+40+π​​:44πn+40+π​
224πn+40+π​​
Aplicar as propriedades das frações: acb​​=c⋅ab​=2⋅24πn+40+π​
Multiplicar os números: 2⋅2=4=44πn+40+π​
=−44πn+π+40​
=−44πn+40+π​
x=−44πn+40+π​
x=−44πn+40+π​
x=−44πn+40+π​
x=324πn+π−20​,x=−44πn+40+π​
x=324πn+π−20​,x=−44πn+40+π​

Gráfico

Sorry, your browser does not support this application
Visualizar gráfico interativo 

Exemplos populares

3cos(2θ)-sin(θ)=13cos(2θ)−sin(θ)=1sin(t)+2=3sin(t)+2=32sech^2(x)+tanh(x)=02sech2(x)+tanh(x)=016cos^2(θ)-9=016cos2(θ)−9=0sin(a)+cos(a)=1sin(a)+cos(a)=1
Ferramentas de estudoSolucionador de matemática de IAAI ChatFichas de trabalhoPráticaFolhas de "cola"CalculadorasCalculadora gráficaCalculadora de GeometriaVerifique a solução
AplicativosAplicativo Simbolab (Android)Calculadora gráfica (Android)Prática (Android)Aplicativo Simbolab (iOS)Calculadora gráfica (iOS)Prática (iOS)Extensão do Chrome
EmpresaSobre SimbolabBlogAjuda
JurídicoPrivacidadeService TermsPolítica de CookiesConfigurações de cookiesNão venda ou compartilhe minhas informações pessoaisDireitos autorais, diretrizes da comunidade, DSA e outros recursos legaisCentro Jurídico Learneo
Mídia social
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024